

1 ЛЕКЦИЯ

ВВЕДЕНИЕ В БИОМАТЕРИАЛОВЕДЕНИЕ

• БИОМАТЕРИАЛОВЕДЕНИЕ — ЭТО НАУКА О СОЗДАНИИ, ИССЛЕДОВАНИИ И ПРИМЕНЕНИИ МАТЕРИАЛОВ, КОТОРЫЕ ВЗАИМОДЕЙСТВУЮТ С БИОЛОГИЧЕСКИМИ СИСТЕМАМИ С ЦЕЛЬЮ ВОССТАНОВЛЕНИЯ, ЗАМЕЩЕНИЯ ИЛИ УЛУЧШЕНИЯ ФУНКЦИЙ ОРГАНОВ И ТКАНЕЙ. ОНО ОБЪЕДИНЯЕТ ЗНАНИЯ ИЗ МАТЕРИАЛОВЕДЕНИЯ, БИОЛОГИИ, МЕДИЦИНЫ, ХИМИИ, ФИЗИКИ И ИНЖЕНЕРИИ.

ОСНОВНЫЕ ЗАДАЧИ:

Разработка материалов, совместимых с живыми тканями.

Обеспечение прочности и долговечности медицинских изделий.

Минимизация иммунных реакций и токсичности.

Создание биоактивных и биоразлагаемых материалов.

ИСТОРИЯ РАЗВИТИЯ

• ДРЕВНОСТЬ И АНТИЧНОСТЬ

- ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ МАТЕРИАЛОВ (КОСТЬ, ДЕРЕВО, СЛОНОВАЯ КОСТЬ, ЗОЛОТО) ДЛЯ ПРОТЕЗИРОВАНИЯ ЗУБОВ И КОСТЕЙ.
- В ДРЕВНЕМ ЕГИПТЕ И РИМЕ ПРИМЕНЯЛИ МЕТАЛЛИЧЕСКИЕ ПРОВОЛОКИ ДЛЯ ФИКСАЦИИ ЗУБОВ.
- CPEДHEBEKOBЬE XVIII BEK
- ПЕРВЫЕ ПОПЫТКИ ПРИМЕНЕНИЯ МЕТАЛЛОВ (ЖЕЛЕЗО, СЕРЕБРО, ЗОЛОТО) ДЛЯ ХИРУРГИЧЕСКИХ ИНСТРУМЕНТОВ И ПРОТЕЗОВ.
- В 16 ВЕКЕ АМБРУАЗ ПАРЕ ВВЁЛ В ПРАКТИКУ МЕТАЛЛИЧЕСКИЕ ИМПЛАНТАТЫ И ПРОТЕЗЫ КОНЕЧНОСТЕЙ.

XIX BEK

- РАЗВИТИЕ ХИРУРГИИ И АНТИСЕПТИКИ o ПОЯВЛЕНИЕ ИМПЛАНТАЦИИ КАК МЕТОДА ЛЕЧЕНИЯ.
- И ПОЛЬЗОВАНИЕ ПЛАТИНОВЫХ И ЗОЛОТЫХ НИТЕЙ В СОСУДИСТОЙ ХИРУРГИИ.

XX BEK

- П(ЯВЛЕНИЕ СОВРЕМЕННЫХ МАТЕРИАЛОВ: НЕРЖАВЕЮЩАЯ СТАЛЬ, КОБАЛЬТ-ХРОМОВЫЕ СПЛАВЫ, ТІ ГАН.
- РА ЗРАБОТКА ПОЛИМЕРОВ (ПОЛИЭТИЛЕН, СИЛИКОН, ПОЛИМЕТИЛМЕТАКРИЛАТ) ДЛЯ ПІ ОТЕЗИРОВАНИЯ И СТОМАТОЛОГИИ.
- О КРЫТИЕ БИОКЕРАМИКИ (ГИДРОКСИАПАТИТ, ОКСИД АЛЮМИНИЯ, ЦИРКОНИЯ).
- СС ЗДАНИЕ ПЕРВЫХ ИСКУССТВЕННЫХ КЛАПАНОВ СЕРДЦА, СУСТАВОВ, СОСУДИСТЫХ ПРОТЕЗОВ.

XXI BEK

- РАЗВИТИЕ НАНОТЕХНОЛОГИЙ, БИОИНЖЕНЕРИИ, 3D-БИОПЕЧАТИ.
- БИОРЕЗОРБИРУЕМЫЕ ПОЛИМЕРЫ, ИНТЕЛЛЕКТУАЛЬНЫЕ МАТЕРИАЛЫ, ТКАНЕВАЯ ИНЖЕНЕРИЯ.
- АКТИВНОЕ ИСПОЛЬЗОВАНИЕ КОМПОЗИТОВ И ГИБРИДНЫХ МАТЕРИАЛОВ.

ПЕРСПЕКТИВЫ РАЗВИТИЯ

- •Биоактивные материалы стимулирующие рост и регенерацию тканей (например, остеоинтеграция имплантатов).
- •Биодеградируемые материалы которые постепенно рассасываются в организме, заменяясь естественными тканями.
- •Интеллектуальные (smart) материалы реагирующие на изменения среды (pH, температура, электрический сигнал).
- •Наноматериалы и наноструктуры для доставки лекарств, регенерации тканей, антибактериальной защиты.
- •3D- и 4D-биопечать создание индивидуальных имплантатов и даже органов.
- •Гибридные материалы (biohybrids) комбинация живых клеток и искусственных конструкций.
- •Персонализированные имплантаты с учетом генетических и анатомических особенностей пациента.

Биоматериаловедение прошло путь от применения природных и простых искусственных материалов к созданию высокотехнологичных и «умных» систем, способных взаимодействовать с живыми тканями и стимулировать их восстановление.

Перспективы связаны с **технологиями будущего** — наномедицина, регенеративная медицина, тканевая инженерия, что открывает дорогу к созданию полноценных искусственных органов.

ХАРАКТЕРИСТИКИ МЕТАЛЛИЧЕСКИХ БИОМАТЕРИАЛОВ

Современные биоматериалы на основе **металлов** широко применяются в биомедицине благодаря их прочности, биосовместимости и коррозионной стойкости.

1. Механические свойства

Высокая прочность и твердость.

Устойчивость к усталости (важно для имплантатов суставов, зубных протезов, сердечных клапанов).

Эластичность и модуль упругости должны быть близки к костной ткани, чтобы избежать «стресс-экранинга» (перераспределения нагрузок).

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

. Коррозионная стойкость (в физиологических жидкостях).

Образование пассивирующих оксидных пленок (например, у титана и его сплавов).

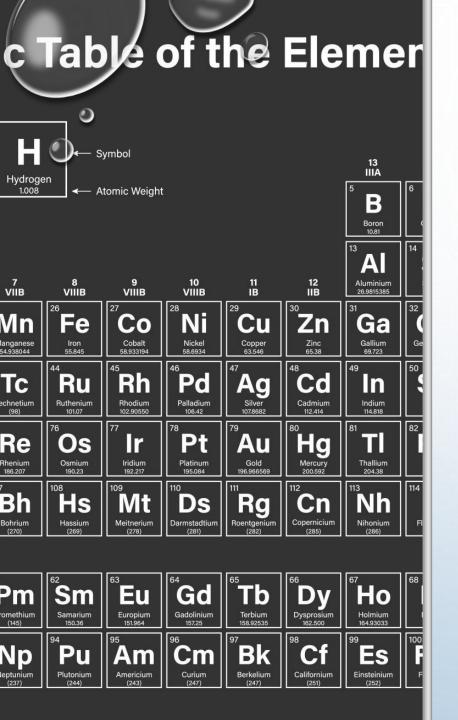
Возможность модификации поверхности (нанопокрытия, плазменная обработка, биоактивные покрытия).

БИОЛОГИЧЕСКИЕ СВОЙСТВА

Биосовместимость (не должны вызывать токсичности, воспаления или иммунного ответа).

Иногда — остеоинтеграция (способность титана связываться с костной тканью).

Минимальная ионная эмиссия (например, никель в составе сплавов может вызывать аллергию).


ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА

- ХОРОШАЯ ОБРАБАТЫВАЕМОСТЬ И ВОЗМОЖНОСТЬ 3D-ПЕЧАТИ (АДДИТИВНЫЕ ТЕХНОЛОГИИ ДЛЯ СОЗДАНИЯ ИНДИВИДУАЛЬНЫХ ИМПЛАНТАТОВ).
- ВОЗМОЖНОСТЬ СТЕРИЛИЗАЦИИ БЕЗ ПОТЕРИ СВОЙСТВ.

ОСНОВНЫЕ ГРУППЫ МЕТАЛЛИЧЕСКИХ БИОМАТЕРИАЛОВ

- ТИТАН И ЕГО СПЛАВЫ (TI, TI-6AL-4V):
 - ВЫСОКАЯ БИОСОВМЕСТИМОСТЬ, НИЗКАЯ ПЛОТНОСТЬ, КОРРОЗИОННАЯ СТОЙКОСТЬ.
 - ПРИМЕНЕНИЕ: ИМПЛАНТАТЫ СУСТАВОВ, КОСТНЫЕ ПЛАСТИНЫ, СТОМАТОЛОГИЯ.
- НЕРЖАВЕЮЩИЕ СТАЛИ (316L И ДР.):
 - ДОСТУПНОСТЬ, ПРОЧНОСТЬ, УМЕРЕННАЯ КОРРОЗИОННАЯ СТОЙКОСТЬ.
 - ПРИМЕНЕНИЕ: ОРТОПЕДИЧЕСКИЕ ФИКСАТОРЫ, СЕРДЕЧНО-СОСУДИСТЫЕ УСТРОЙСТВА.

- •Кобальт-хромовые сплавы (Со-Ст):
- •Высокая износостойкость и прочность.
- •Применение: эндопротезы суставов, стоматология.
- •Магниевые сплавы (биоразлагаемые):
- •Способность постепенно рассасываться в организме.
- •Применение: временные фиксаторы костей, стенты.
- •Никелид титана (Nitinol):
- •Эффект памяти формы и суперэластичность.
- •Применение: ортодонтические дуги, стенты, кардиохирургия.

Характеристика	Титан (Ti, Ti-6Al-4V)	Нержавеющая сталь (316L)	Кобальт-хром (Со-Сг)	Магний и сплавы	Никелид титана (Nitinol)
Прочность	Высокая, при низкой плотности	Высокая	Очень высокая	Средняя	Высокая
Модуль упругости	Близок к кости → снижает «стресс-экранирование»	Выше, чем у кости	Намного выше кости	Близок к кости	Средний
Коррозионная стойкость	Отличная (оксидная пленка)	Умеренная, пассивируется	Отличная	Низкая (подвержен растворению)	Хорошая
Биосовместимость	Очень высокая, остеоинтеграция	Хорошая, возможна аллергия (Ni)	Хорошая, но возможна аллергия (Co, Cr)	Хорошая, биодеградируемый	Хорошая, но возможна токсичность Ni
Износостойкость	Средняя	Средняя	Очень высокая	Низкая	Средняя
Особые свойства	Легкий, остеоинтеграция	Дешевый, доступный	Высокая твердость, износостойкость	Биодеградируемый (рассасывается в организме)	Эффект памяти формы, суперэластичность
Основные применения	Ортопедия, стоматология, протезы суставов	Фиксаторы костей, сердечно- сосудистые устройства	Эндопротезы суставов, стоматология	Временные фиксаторы костей, биоразлагаемые стенты	Стенты, ортодонтические дуги, кардиохирургия
Стоимость	Высокая	Низкая	Высокая	Средняя	Высокая